Interface-Driven, Model-Based Test Automation

S

Thursday, 1 May 2003
Track 8: 9:15 - 9:55
Room 251 D-F

Dr. Mark R. Blackburn, Robert D. Busser, and Aaron M. Nauman

Software Productivity Consortium

This article describes an interface-driven approach that combines requirements modeling to
support automated test-case and test-driver generation. It focuses on how test engineers can
develop more reusable models by clarifying textual requirements as models in terms of com-
ponent or system interfaces. The focus of interface-driven modeling has been recognized as
an improvement over the process of requirements-driven, model-based test automation.
Model-based testing users identified the insights and recommendations for applying this

approach when they began to scale their model-based testing efforts on larger projects.

Model-based test automation has helped
reduce cost, provide early identification
of requirements defects, and improve test
coverage [1, 2, 3, 4, 5, 6]. Industry use of
model-based test automation has provided
insight into practical methods that use inter-
face-driven analysis with requirements mod-
eling to support automated test generation.
However, the term interface is used loosely
in this article.

An interface is a component’s inputs and
outputs, along with the mechanism to set
inputs, including state and history informa-
tion, and retrieve the resulting outputs.
Recommendations are provided to perform
the modeling of textual requirements in con-
junction with interface analysis to support
reuse of models and their associated test
driver mappings.

Test-driver mappings specify the relation-
ships between model variables and the inter-
faces of the system under test. The insights
are useful for understanding how to scale
models and the associated test-driver map-
pings to support industry-sized verification
projects, while supporting organizational
integration that helps leverage key resources.

We have applied the model-based test-
automation method called the Test
Automation Framework (TAF) since 1996.
TAF integrates various government and
commercially available model-development
and test-generation tools to support defect
prevention and automated testing of systems
and software. TAF supports modeling meth-
ods that focus on representing requirements
such as the Software Cost Reduction (SCR)
method as well as methods that focus on
representing design information such as
Unified Modeling Language (UML)-based
tools or Mathwork’s Simulink, which sup-
ports control system modeling for automo-
tive and aircraft systems.

With model translation, requirements-
based or design-based models are converted
into test specifications. T-VEC is the test
generation component of TAF that uses the
test specification to produce tests. T-VEC

May 2003

supports test-vector generation, test-driver
generation, requirements test-coverage
analysis, and test results checking and report-
ing. Test vectors include inputs as well as the
expected outputs with requirement-to-test
traceability information. The test-driver
mappings and the test vectors are inputs to
the test-driver generator that produces test
drivers. The test drivers are then executed
against the implemented system during test
execution.

There are papers that describe require-
ments modeling [7] and others with exam-
ples that support automated test generation
[3, 8,9, 10]. Aissi provides a historical per-
spective on test-vector generation and
describes some of the leading commercial
tools [11]. Pretschner and Lotzbeyer briefly
discuss extreme modeling that includes
model-based test generation [12], which is
similar to uses of TAF There are various
approaches to model-based testing and
Robinson hosts a Web site that provides use-
ful links to authors, tools, and papers [13].

Why Interface-Driven Modeling?
It may seem appropriate first to develop
models from the requirements, but when
developing models for testing purposes, the
models should be developed in conjunction
with analysis of the interfaces to the compo-
nent or system under test. Modeling the
behavioral requirements is usually straight-
forward and easier to evolve once the inter-
faces and operations are understood because
the behavioral requirements, usually defined
in text, must be modeled in terms of vari-
ables that represent objects accessible
through interfaces.

A verification model is a refinement of the
requirements specified in terms of the com-
ponent’s interfaces. Verification modeling
from the interfaces is analogous to a test
engineer developing tests in terms of specif-
ic interfaces of the component under test.
The test engineer’s role involves developing
verification models from requirements. The
requirements engineers, sometimes synony-

mous with system engineers, continue to
develop textual requirements as well as any
other type of analytical model. Design engi-
neers should focus on identifying the com-
ponents of the system architecture, and pro-
vide the component interfaces to the test
engineer.

These requirements and interfaces can
then be used by test engineers to construct
formalized verification models (in a tool like
SCR). The test engineer can use TAF tools to
perform model analysis and correct any
inconsistency, as well as produce test vectors
and test drivers. Once completed, the textual
requirements and models, as well as the for-
malized verification models are passed to the
designers and implementers.

Once code is created, the generated test
drivers can be used to test the implementa-
tion. TAF translators convert verification
models into a form where the T-VEC system
generates test vectors and test drivers, with
requirement-to-test traceability information
that allows failures to be traced backwards to
the requirement. The designer/implementer
can then use the test drivers to test the imple-
mented system, continuously and iteratively.

Figure 1 on page 28 provides a perspec-
tive of the verification modeling process
flow. A modeler is supplied with various
inputs. Although it is common to start the
process with poorly defined requirements,
inputs to the process can include require-
ment system and software specifications
(e.9., System Requirements Specification
[SRS], Software Requirements Specifications
[SWRS])), user documentation, interface con-
trol documents, application program inter-
face documents, previous designs, and old
test scripts.

A verification model is composed of a
model and one or more test-driver mappings.
A test driver consists of object mappings and
a schema (pattern). Object mappings relate
the model objects to the interfaces of the
system under test. The schema defines the
algorithmic pattern to carry out the execu-
tion of the test cases. Models are typically

wwwi.stsc.hill.af.mil 27

Software Engineering Technology

Requirements Engineer Requirements

(come in many forms)

Designer/Implementer

* SRS
<8, - SWRS
=« Function List

« API

System

« Change Request i \

=

Test Engineer i

Component Interfaces

Test
Results

(Modeler)
Test
Verification Model T Vectors 5 -
e = Y Test Vector QRAddaihdN Test Driver |Gy
Interfaces Behavior Generator
Data Types Conditions Test
Variables + Events Drivers
Constants State Machines
Functions
~ Test Driver + C, C++, SQL, PLI, JCL, Ada, XML
. - Java - GUI, JDBC, Oracle
» M ’ ’
% « Perl — ODBC, Oracle, and Interbase
* Proprietary, WinRunner, DynaComm
Test Engineer @ N
(Automation Architect) Types of Existing Schema
==TIME= — — == = = >

Figure 1: Interface-Driven, Model-Based Test Automation Supports Continuous Verification and Validation

developed incrementally. The test-vector
generator also detects non-testable modeled
requirements (i.e., requirements with contra-
dictions).

Table-based modeling, like the SCR
method, has been effective and relatively easy
to learn for test engineers [2]. Design engi-
neers commonly develop models based on
state machines or other notations such as the
UML. However, users and project leaders
observed that test engineers found it easier to
develop requirements for test in the form of
tables (See [8] for details). The modeling
notations supported by tools for the SCR
method have well-defined syntax and seman-
tics allowing for a precise and analyzable def-
inition of the required behavior.

What Are Some Modeling
Perspectives?

Specification languages, usually supported
through graphical modeling environments,
describe models. Specification languages
provide abstract descriptions of system and
software requirements and design informa-

tion. Cooke et al. developed a scheme that
classified specification language characteris-
tics [14]. Independent of any specification
language, Figure 2 illustrates three specifi-
cation categories based on the purpose of
the specification. Cooke et al. indicate that
most specification languages usually are
based on a hybrid approach that integrates
different classes of specifications.

Requirements specifications define the
boundaries between the environment and
the system and, as a result, impose con-
straints on the system. Functional specifica-
tions define behavior in terms of the inter-
faces between components, and design
specifications define the component itself.
A verification model, in the context of this
article, is best classified as a functional spec-
ification.

Design-for-Test Supports
Interface Accessibility

It is best to understand the interfaces of the
system under test before modeling the
behavioral requirements to ensure that the

Figure 2: Specification Purposes

Requirements Specification: Defines
the boundary between the environment
and the system.

Functional Specification: Defines
the interfaces within the system.

Design Specification: Defines
the component.

Note: D. Cooke et al., 1996

28 CrossTALK The Journal of Defense Software Engineering

.

interfaces for the resulting test-driver map to
actual inputs or outputs of the system under
test. If the interfaces are not formalized or
completely understood, requirements mod-
els can be developed, but associated object
mappings required to support test-driver
generation must be completed after the
interfaces have been formalized.

This can make the object-mapping
process more complex because the model
entities may not map to the component
interfaces. In addition, if the component
interfaces are coupled to other components,
the components are typically not completely
controllable through separate interfaces. This
too can complicate the modeling and testing
process. Consider the following conceptual
representation of the set of components and
interfaces shown in Figure 3.

There is a specific way to support a sys-
tematic verification approach that can be
performed in stages where each component
is completely verified with respect to the
requirements allocated to it. The interfaces to
the component should be explicitly and
completely accessible, either using global
memory or, better, through get-and-set
methods/procedures in Figure 3.

For example, if the inputs to the B.2
component of higher-level component B are
completely available for setting the inputs to
B.2, and the outputs from the B.2 functions
can be completely observed, then the func-
tionality within B.2 can be completely speci-
fied and systematically verified. However, if
interfaces from other components such as
B.1 are not accessible then some of the func-
tionality of the B.2 component is coupled
with B.1, and the interfaces to B.2 must also
include interfaces to B.1 or to other upstream
components such as component A. This
interface coupling makes the test-driver
interfaces more complex to describe, but also
forces the behavioral modeling to be
described in terms of functionality allocated
to combinations of components.

The coupling reduces components’ reuse
and increases the regression testing effort
due to the coupled aspects of the system
components. The problems associated with
testing highly coupled systems can be prob-
lematic for model-based testing and also neg-
atively affect any type of testing. We have
observed that interface-driven modeling has
helped foster better system design by reduc-
ing the coupling, but also has helped provide
better testing support.

Understanding Interfaces

One of the most noted results of the TAF
was its application to the Mars Polar Lander
(MPL). NASA launched the MPL project on
Feb. 7, 1994. Six years later on Dec. 3, 1999,
after the MPL had traveled more than 35

May 2003

million miles and was minutes away from its
scheduled landing, all contact with the craft
was lost. The MPL cost $165 million to
develop and deploy.

After the fact, we had the opportunity to
use the TAF to see if it would have found
the bug. We deliberately did not look at the
code before creating our tests. Instead, we
created them by modeling the English-lan-
guage requirements in a tool based on the
SCR method. We modeled the Touchdown
Monitor (TDM) requirements using the TAF
tools and were able to identify the software
error associated with the MPL's landing pro-
cedures in fewer than 24 hours.

The TDM is a software component of
the MPL system that monitors the state of
three landing legs during two stages of the
descent. As shown in Figure 4, a real-time
multi-tasking executive calls the TDM mod-
ule at a rate of 100 times per second and
receives information on the leg sensors from
a second module. These two modules estab-
lish the interfaces to TDM. During the first
stage, starting approximately five kilometers
above the Mars surface, the TDM software
monitors the three touchdown legs.

There is one sensor on each leg to deter-
mine if the leg touched down. When the legs
lock into the deployed position, there was a
known possibility that the sensor might indi-
cate an erroneous touchdown signal. The
TDM software was to handle this potential
event by marking a leg that generates a spu-
rious signal on two consecutive sensor-reads
as having a bad sensor. During the second
stage, starting about 40 meters above the sur-
face, the TDM software was to monitor the
remaining good sensors. When a sensor had
two consecutive reads indicating touchdown,
the TDM software was to command the
descent engine to shutdown.

There is no absolute way to confirm
what happened to the MPL. It is believed
that one or more of the sensors did have
two consecutive reads before the 40 meter
point; the leg-sensor information was stored
in TDM program memory. When the MPL
crossed the 40-meter point, the TDM
changed states and read the memory associ-
ated with the leg-sensors during the first
stage of descent. Because the memory indi-
cated two consecutive reads engineers
believe that the engine thruster was shut off
at about 40 meters above the Mars surface.
Developers could have designed and imple-
mented the requirement in many ways, but
the essence of the design flaw is that the
program variables retained the state of the
bad sensor information.

Organizational Best Practices
Interface-driven modeling can be applied
after development is complete; however,

May 2003

Interface-Driven, Model-Based Test Automation

LA PO e PO e |

B.1 B.2

(=

——

=

—

B.3

=

Coupled Interfaces

S e U
L. S

Well-Defined Interfaces

Complicate access to
component and limit
controllability that
requires test inputs
to be provided upstream.

Support direct
controllability and
observability for
component.

Key

O—P Well-Defined Interface

——p Coupled Interface

Figure 3: Conceptual Components and Interfaces of a System

significant benefits have been realized when
it is applied during development. Ideally,
test engineers work in parallel with develop-
ers to stabilize interfaces, refine require-
ments, and build models to support itera-
tive test and development. Test engineers
write the requirements for the products
(which in some cases are poorly document-
ed) in the form of models, as opposed to
hundreds or thousands of lines of test
scripts. They generate the test vectors and
test drivers automatically.

During iterative development, if the
component behavior, the interface, or the
requirements change, the models are modi-
fied and test cases and test drivers are regen-
erated and re-executed. The key advantages
are that testing proceeds in parallel with
development. Users like Lockheed Martin
state that test is being reduced by about 50
percent or more, while describing how early
requirement analysis significantly reduces
rework through elimination of requirement
defects (i.e., contradiction, inconsistencies,
and feature interaction problems) [2, 15].

Other Applications
TAF has been applied to applications in var-

ious domains, including critical applications
for aerospace, medical devices, flight naviga-
tion, guidance, autopilots, display systems,
flight management and control laws, engine
controls, and airborne traffic and collision
avoidance. TAF has also been applied to
noncritical applications like databases, client-
server, Web-based, automotive, and telecom-
munication applications. The related test-
driver generation has been developed for
many languages (e.g, C, C++, Java, Ada,
Perl, PL/1, SQL, etc.) as well as proprietary
languages, COTS test-injection products
(e.0., DynaComm, WinRunner) and test
environments. Most users of the approach
have reduced their verification/test effort by
50 percent [2, 15].

Summary

This article provides pragmatic guidance for
combining interface analysis and require-
ments modeling to support model-based test
automation. The model-based testing
method and tools described here have been
demonstrated to significantly reduce cost
and effort for performing testing, while also
being demonstrated to identify requirements
defects that reduce costly rework.

Figure 4: Mars Polar Lander Details
Mars Lander Descent Path

5 KM
TDM_started = TRUE
First
Stage
40 Meters
CMD_disable_enable = enable
Second
Stage < J

Mars Surface

Executive

——
CMD_disable_enable
TDM_started

v

TDM
Module

?
Sensor Value
for Each of Three
Legs
|
Leg
Sensors

TDM
lInterfaces

TDM Module
Interfaces

wwwi.stsc.hill.af.mil 29

Software Engineering Technology

These recommendations for defining
interfaces that provide better support for
testability are valid for all forms of testing.
Organizations can see the benefits of
using interface-driven, model-based test-
ing to help stabilize the interfaces of the
system early, while identifying common
test-driver support capabilities that can be
constructed once and reused across relat-
ed tests. Finally, parallel development of
verification modeling is beneficial in
development and helps identify require-
ment defects early to reduce rework.

The TAF is a framework that inte-
grates various commercial and govern-
ment tools, however, the Software
Productivity Consortium does not provide
licenses for these tools. For additional
information on obtaining these tools, con-
tact the authors. Finally, many referenced
papers in the article can be downloaded
from the Software Productivity
Consortium Web site <www.software.
org/pub/taf/Reports.html>.00

References

1. Rosario, S., and H. Robinson.
“Applying Models in Your Testing
Process, Information and Software
Technology.” 42.12 (1 Sept. 2000).

2. Kelly, V, E. L. Safford, M. Siok, and
M. Blackburn. “Requirements
Testability and Test Automation,”

Mark R. Blackburn,
Ph.D., is a Software
Productivity Consor-
m tium fellow with 20
years of software sys-
tems engineering expe-
rience in development, management
and applied research of process, meth-
ods, and tools. He has made more than
30 presentations at conferences and
symposia, and is involved in consulting,
strategic planning, proposal and busi-
ness development, as well as develop-
ing and applying methods for model-
based approaches for requirement
defect removal and test automation.

Software Productivity
Consortium

2214 Rock Hill Road
Herndon, VA 20170

Phone: (703) 742-7136

Fax: (703) 742-7350

E-mail: blackbur@software.org

30 CrossTaLk The Journal of Defense Software Engineering

Lockheed Martin Joint Symposium,
June 2001.

3. Blackburn, M. R., R. D. Busser, A. M.

Nauman, R. Khnickerbocker, and R.
Kasuda. “Mars Polar Lander Fault
Identification Using Model-Based
Testing.” Proc. in IEEE/NASA 26th
Software Engineering Workshop, Nov.
2001.

4. Busser, R. D., M. R. Blackburn, and A.

M. Nauman. “Automated Model
Analysis and Test Generation for
Flight Guidance Mode Logic.” Digital
Avionics System Conference. Indiana-
polis, IN, 2001.

5. Statezni, David. “Test Automation

Framework, State-Based, and Signal
Flow Examples.” Twelfth Annual
Software Technology Conference. Salt
Lake City, UT, 30 Apr.-5 May 2000.

6. Statezni, David. “T-VEC'’s Test Vector

Generation System.” Software Testing

and Quality Engineering. May/June
2001.

7. Heitmeyer, C., R. Jeffords, and B.

Labaw. “Automated Consistency
Checking of Requirements Specifica-
tions.” ACM TOSEM 5.3 (1996): 231-
261.

8. Blackburn, M. R., R. D. Busser, and A.

M. Nauman. “Removing Requirement
Defects and Automating Test.” STAR-
EAST. Orlando, FL, May 2001.

About the Authors

Robert D. Busser is a
principal member of
the technical staff of
the Software Product-

i ivity Consortium. He
-:.?‘h- W% has more than 20 years
of software systems engineering expe-
rience in development, and manage-
ment in the area of advanced software
engineering, and expertise in software
engineering processes, methods and
tools. He has extensive experience in
requirement and design methods, real-
time systems, model-based develop-
ment and test generation tools, model
analysis, and verification.

Software Productivity
Consortium

2214 Rock Hill Road
Herndon,VA 20170

Phone: (954) 753-9634

Fax: (703) 742-7350

E-mail: busser@software.org

9. Blackburn, M. R,, R. D. Busser, and A.
M. Nauman. “Eliminating Require-
ment Defects and Automating Test.”
Test Computer Software Conference,
June 2001.

10. Blackburn, M. R., R. D. Busser, A. M.
Nauman, and R. Chandramouli.
Model-Based Approach to Security
Test Automation. Proc. of Quality
Week, June 2001.

11. Aissi, S. “Test Vector Generation:
Current Status and Future Trends.”
Software Quality Professional 4.2
(Mar. 2002).

12. Pretschner, A., and H. Lotzbeyer.
Model-Based Testing with Constraint

Logic Programming: First Results and
Challenges. Proc. of 2nd ICSE Intl.

Workshop on Automated Program
Analysis, Testing, and Verification.
Toronto, Canada, May 2001.

13. Robinson, H. Model-Based Testing
<www.model-based-testing.org>.

14. Cooke, D., A. Gates, E. Demirors, O.
Demirors, M. Tankik, and B. Kramer.
“Languages for the Specification of

Software.” Journal of Systems
Software 32 (1996): 269-308.21.

15. Safford, Ed L. “Test Automation
Framework, State-Based and Signal
Flow Examples.” Twelfth Annual
Software Technology Conference. Salt
Lake City, UT, 30 Apr.-5 May 2000.

Aaron M. Nauman is
a senior member of the
technical staff of the
Software Productivity
Consortium. He has a
wide range of systems
and applications development experi-
ence in both real-time and information
systems domains. Nauman is involved
in the development of model-based
transformation tools for automated
model analysis and test generation. He
has experience in object-oriented tech-
nologies, distributed and client/server
systems, Web-based and components-
based software and systems integra-
tion.

Software Productivity
Consortium

2214 Rock Hill Road
Herndon,VA 20170

Phone: (703) 742-7104

Fax: (703) 742-7350

E-mail: nauman@software.org

May 2003

